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Forced convection heat transfer across a circular cylinder rotating with a constant non-dimensional rota-
tion rate ðaÞ varying from 0 to 6 are investigated for Reynolds numbers of 20–160 and a Prandtl number
of 0.7. Flow transitions is reported here for a wider range of Reynolds number and rotation rates. Heat
transfer visualization technique using heatlines is implemented here, probably for the first time, in finite
volume framework for the unsteady heat transfer problem in complex domain and used for heat flow
analysis. Rotation can be used as a drag reduction and heat transfer suppression technique.
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1. Introduction dicted by Hu et al. [14]. Thereafter, around same time, Stojkovic
Classical problem of flow and heat transfer past a stationary cir-
cular cylinder has been subject of numerous investigations [1]. In
contrast, such studies on the cylinder subjected to rotation are
scarce although this particular technique is used for flow control,
lift enhancement, boundary layer control etc. In these flows, the re-
sults depend not only on the Reynolds number (Re) but also on
rotation rate ðaÞ defined as the ratio of rotational velocity of the
cylinder wall to the incoming free stream flow velocity, expressed
as

Re ¼ u1D
m

and a ¼ Dx
2u1

ð1Þ

The flow across a stationary cylinder undergoes various transition
with increasing Re such as steady to periodic flow at Re = 47 and
2-D periodic to 3-D periodic flow at Re = 188.5 reported by Barkley
and Henderson [2] and at Re = 194 by Williamson [3]. Baranyi [4]
predicted the 3-D transition at Re = 160 for the cylinder. Thus, the
present study is limited to Re 6 160 in the 2-D laminar flow regime
for the cylinder subjected to various rotation rates. Table 1 gives a
brief overview of published studies on flow and heat transfer
including the range of Re and a values, grid sizes and domain
height. An excellent review for this problem is given in Stojkovic
et al. [10] and Mittal and Kumar [12]. Suppression of vortex shed-
ding at a critical rotation rate a > aI for a Re > 47 was first pre-
ll rights reserved.

x: +91 22 25726875.
et al. [10,11] at Re = 60, 100 and 200 and Mittal and Kumar [12]
at Re = 200 found two more flow transitions. Second transition from
steady to unsteady flow at aII and third transition at a > aIII where
unsteady flow is again suppressed to steady flow. They found the
second unsteady flow mode in a very narrow range of
aðaII 6 a 6 aIIIÞ. Kang et al. [9] found drag and lift coefficient de-
creases with increase in rotation rates.

Badr and Dennis [13] found a decrease in laminar forced con-
vection heat transfer with increasing rotation rate from an isother-
mal cylinder for Re = 5, 10, 20, 40 and 100 at a 6 4. An approximate
analytical derivation for average Nusselt number was obtained by
Kendoush [15] using the appropriate velocity components in the
energy equation. Table 1 shows that all work on rotating circular
cylinder was done for isothermal flow except that of Badr and Den-
nis [13] for heat transfer. The objective of present study is to devel-
op an in-house multi-block finite volume code for complex
domains on a collocated grid and a detailed investigation of flow
and heat transfer characteristics of rotating circular cylinder for
wide range of Reynolds number ð20 6 Re 6 160Þ and rotation
parameters ð0 6 a 6 6Þ in the two-dimensional laminar flow re-
gime. Furthermore, the objective is to analyse the heat flow using
heatline visualization technique (proposed by Kimura and Bejan
[16]) implemented in finite volume framework for both steady
and unsteady periodic flows.

2. Physical description of the problem

The flow configuration is shown in Fig. 1(a). A two-dimen-
sional circular cylinder with diameter D exposed to a constant
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Nomenclature

CD total drag coefficient ð¼ CDp þ CDv Þ
CDp pressure drag coefficient ð¼ FDp=

1
2 qu2

1DÞ
CDv viscous drag coefficient ð¼ FDv=

1
2 qu2

1DÞ
CL total Lift coefficient ð¼ CLp þ CLv Þ
CLp pressure lift coefficient ð¼ FLp=

1
2 qu2

1DÞ
CLv viscous lift coefficient ð¼ FLv=

1
2 qu2

1DÞ
f frequency of vortex shedding, s�1

FDp pressure drag force on the cylinder
FDv viscous drag force on the cylinder
FLp pressure lift force on the cylinder
FLv viscous lift force on the cylinder
H heat function
M number of grid points in radial direction
N number of grid points in angular direction
n cylinder surface normal direction
Nu average Nusselt number
Nu0 average Nusselt number for stationary cylinder
NuL local Nusselt number ð¼ � @h

@nÞ
St non-dimensional vortex-shedding frequency ð¼ fD=u1Þ
T1 free-surface temperature, K
u streamwise velocity, ms�1

u1 free-stream velocity, ms�1

U non-dimensional streamwise velocity ð¼ u=u1Þ
v cross-stream velocity, ms�1

V non-dimensional cross-stream velocity ð¼ v=u1Þ
x streamwise dimension of coordinates, m
X non-dimensional streamwise dimension of coordinates

ð¼ x=DÞ
y cross-stream dimension of coordinates, m
Y non-dimensional cross-stream dimension of coordi-

nates ð¼ y=DÞ

Greek symbols
a non-dimensional rotation rate ð¼ Dx=2u1Þ
/ angular displacement from the front stagnation point, �
w stream function
s non-dimensional time
h non-dimensional temperature
x constant angular velocity of the cylinder rotation,

rads�1

Subscripts
W surface of the cylinder
rms root mean square
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free-stream velocity and temperature represented by u1 and T1,
respectively. Cylinder is rotating in a counterclockwise direction
with constant angular velocity x and maintained at a constant
temperature TW > T1. Kang et al. [9] and Stojkovic et al. [10] car-
ried out the numerical investigation for rotating cylinder placed
at the center of a square domain of size 100D which was found suf-
ficient enough in the present study for domain independent results
and is used here.
3. Governing equations and boundary conditions

The unsteady, conservative and dimensionless form of the Na-
vier–Stokes equations in two dimensions for the incompressible
flow (with constant thermo-physical property) are the governing
equations:

Continuity:

@U
@X
þ @V
@Y
¼ 0 ð2Þ

X-momentum:

@U
@s
þ @ðUUÞ

@X
þ @ðVUÞ

@Y
¼ � @P

@X
þ 1

Re
@2U

@X2 þ
@2U

@Y2

 !
ð3Þ
Table 1
Summary of literature survey for flow and heat transfer across a rotating circular cylinder

Author Reynolds number Rotation rate

Townsend [5] 10, 40, 60 0 6 a 6 5
Badr et al. [6] 5, 20, 60, 100, 200 0 6 a 6 1
Ingham and Tang [7] 5, 20 0 6 a 6 3
Tang and Ingham [8] 60, 100 0 6 a 6 1
Kang et al. [9] 40, 60, 100, 160 0 6 a 6 2:5
Stojkovic et al. [10] 0:01 6 Re 6 45;100 0 6 a 6 6;6 1
Stojkovic et al. [11] 60, 160, 200 0 6 a 6 6
Mittal and Kumar [12] 200 0 6 a 6 5
Badr and Dennis [13] 5 6 Re 6 100 0:1 6 a 6 4
Y-momentum:

@V
@s
þ @ðUVÞ

@X
þ @ðVVÞ

@Y
¼ � @P

@Y
þ 1

Re
@2V

@X2 þ
@2V

@Y2

 !
ð4Þ

Thermal-energy equation:

@h
@sþ

@ðUhÞ
@X

þ @ðVhÞ
@Y

¼ 1
RePr

@2h

@X2 þ
@2h

@Y2

 !
ð5Þ

with

U ¼ u
u1

; V ¼ v
u1

; s ¼ tu1
D

; X ¼ x
D
; Y ¼ y

D
;

P ¼ p
qu2
1
; h ¼ T � T1

TW � T1

Here u1 and T1 is the uniform velocity and temperature of the fluid
far away from the cylinder. The Reynolds number and Prandtl num-
ber are the governing parameters for this problem and is defined as
Re ¼ qu1D=l and Pr ¼ lcp=k.

Boundary conditions for the flow and temperature field are as
follows:

Left boundary (inlet): uniform flow condition

U ¼ 1; V ¼ 0;
@P
@X
¼ 0 and h ¼ 0 ð6Þ
. Note that except the last one, all the other work are for isothermal flow.

Grid size Domain height

M ¼ 20;N ¼ 40 H=D ¼ 20:1
M 6 41;N 6 162 H=D ¼ 400
42 6 N 6 162;11 6 M 6 41 H=D!1
M 6 60;N 6 30 H=D!1
M ¼ 241;N ¼ 241 H=D ¼ 100

2 8:105;M ¼ 241;N ¼ 241 H=D ¼ 103;H=D ¼ 100
M ¼ 241;N ¼ 241 H=D ¼ 100
32,190 nodes H=D ¼ 200
M 6 41;N 6 162 H=D ¼ 400



Table 2
Comparison of present results with the published results for Re = 100 at a ¼ 1 and 2.

Source Kang et al. [9] Stojkovic et al. [10] Present

Parameter a ¼ 1 a ¼ 2 a ¼ 1 a ¼ 2 a ¼ 1 a ¼ 2

St 0.1655 – 0.1658 – 0.1645 –
CL �2.4881 �5.4931 �2.504 �5.48 �2.49 �5.4757
CD 1.1040 0.4682 1.1080 0.46 1.0951 0.4683
C0L 0.3631 – 0.3616 – 0.3461 –
C0D 0.099 – 0.0986 – 0.0981 –
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Fig. 1. (a) Schematic of the unconfined flow and heat transfer around rotating
circular cylinder. (b) Grid structure. (c) Close up view in the vicinity of cylinder.
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Top and bottom boundary: free slip flow condition

@U
@Y
¼ 0;V ¼ 0;

@P
@Y
¼ 0; and

@h
@Y
¼ 0 ð7Þ

Right boundary (outlet): convective boundary condition

@v
@s
þ Uc

@v
@n
¼ 0; P ¼ 0 ð8Þ

where, Uc ¼ 1;v ¼ U;V and h
Solid surface of the cylinder: Dirichlet boundary condition

U ¼ �asin ð/Þ;V ¼ �acos ð/Þ; @P
@n
¼ 0; h ¼ 1 ð9Þ
4. Numerical method

In the present study multi-block structured grid is developed by
dividing the domain into five blocks as shown in Fig. 1(b). A preli-
minary investigation is conducted using various types of stretching
functions, to determine the grid that best captured the unsteady
flow features present in the flow calculations. The grid structure
with total number of control volumes 43076 which gave the best
results after a grid independent study is finally used. The grid is di-
vided into four zones in both directions and uniform as well as
non-uniform grid distributions are employed. The elliptic grid gen-
eration technique is used for generation of grid for third block in
which cylinder is placed with a very fine grid of 0.02 in the radial
direction clustered around the cylinder over a distance of 0.5 units
to adequately capture wake-wall interactions. On the surface of the
cylinder a uniform cell size of 0.02 is used in the angular direction.
Close up view in the vicinity of cylinder is shown in Fig. 1(c). A
time-step of 10�4, is found sufficient to obtain time-step indepen-
dent unsteady results.

A Semi-explicit finite-volume method by Sharma and Eswaran
[17] for complex 2-D geometries on a non-staggered grid is used.
For complex geometry, the normal gradient of a variable at a face
center of a CV is computed in terms of two components: First, gra-
dient along the line joining cell centers (on either side of the face)
and second, gradient tangential to the face. The first component
uses the cell center values and the second one uses the cell vertex
values (obtained by volume weighted linear interpolation of the
adjoining four cell center values). Quadratic Upwind Interpolation
for Convective Kinematics (QUICK) convection scheme is consis-
tently implemented in the code while ensuring the conservative
property of the finite volume method. In the previous work by
present authors (Paramane and Sharma [18]), implementation is-
sues for higher order convection scheme on non-staggered grid is
discussed and QUICK convection scheme is shown better than
first/second order and central difference scheme.

Barnes [19] reported experimental results at Re = 60 for
0 6 a 6 1:2 in excellent agreement with the numerical results of
Kang et al. [9] and strong disagreement with the results of Hu
et al. [14]. Strouhal number, St ¼ 0:1359 is found in the present work
at Re = 60 and a ¼ 1 which matches very well with the experimental
value of 0.1372, obtained by Barnes [19]. The present numerical
method is also validated against the results of Kang et al. [9] and
Stojkovic et al. [10] and an excellent agreement is shown in Table 2.

5. Heat-function and heatlines

Traditionally, temperature-contours/isotherms are used to de-
scribe heat transfer characteristics whereas for fluid flow, velocity
contours are not usually used but streamlines are more common.
Isotherms and streamlines together do not visually describe
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relationship between heat and fluid flow mechanisms. Kimura and
Bejan [16] in 1983, first proposed heatlines as an adequate tool for
analysis of 2D convective heat transfer. Thereafter, most of the
researchers [20–23] have used the technique for steady flows
and natural convection problem but not for the unsteady forced
convection flows considered here.

The dimensionless form of heat function H is defined as:

@H
@Y
¼ PeUh� @h

@X
ð10Þ

� @H
@X
¼ PeVh� @h

@Y
ð11Þ

where Pe ¼ u1D=a ¼ RePr and the heat function is non-dimen-
sionalised by qcp ðTW � T1Þu1D=Pe. Heatline represents a combina-
tion of thermal-diffusion/conduction and enthalpy/advection flow
referred here as ‘‘heat/thermal-energy flow”. According to caloric
theory of the famous French scientist Antonie Lavoisier, heat is con-
sidered as an inviscible, tasteless, odourless, weightless fluid, which
he called caloric fluid. Although, the modern interpretation of heat is
somewhat different, nevertheless, there are certain problems
involving heat flow such as discussion on heatlines here for which
Lavoisier’s approach is rather useful. The role of heatlines for heat
flow is analogous to that of streamlines for fluid flow: difference
of stream/heat function values represents fluid/heat flow rate i.e.
the function remains constant on a solid/adiabatic wall, tangent
to stream/heat line represents the direction of fluid/heat flow with
no flow in the normal direction and the stream/heat line originate
or emerge at the mass/heat source. For the cylinder surface
maintained at CWT smaller than the inlet fluid temperature, then
heat source is also at inlet and heat sink is at the surface otherwise
heat source is at the cylinder surface, the case considered here. The
use of heatline for unsteady incompressible flow is analogous to the
use of streamline for unsteady compressible flow. This is because
the energy equation for incompressible and continuity equation
for the compressible flow are not divergence free as the unsteady
terms acts like a volumetric source term.

All the researchers mentioned above solved the Poisson type of
heat function equation (obtained by eliminating the temperature
gradient in Eqs. (10) and (11) by cross-differentiation) for simple
geometry/domain problems using boundary conditions for heat
functions to get the value of heat function variation in the compu-
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Fig. 2. Stability map for various Re and rotation rates a, demarcating the steady and
unsteady periodic flow regimes.
tational domain. In the present study, probably for the first time,
the heat function equation is computed at each time step in the fi-
nite-volume method framework as well as that for the complex
geometry/domain (except that of Dalal and Das [23]) where Eqs.
(10) and (11) are integrated to calculate the heat function at the
cell vertex from the already computed convection and diffusion
fluxes on the faces of the cells. This method reduces the complexity
and effort for the formulation of boundary conditions and solving
the heat function Poisson equation. The heat function formulation
is validated and an excellent agreement with the results of Deng
and Tang [21] is found.
6. Results and discussion

In the present study, the governing parameters considered are
as follows:
Re = 20–160 in the steps of 20.
Rotation rate ðaÞ: 0–6.
Prandtl number has been fixed at 0.7 (as for air).
6.1. Flow transitions

For Re > 60 Fig. 2 shows a stability map with the three
curves representing the rotation rates (aI;aII and aIII) at which
three transitions between steady and unsteady flows with the
four flow regimes are found: I VS (vortex shedding) regime for
a 6 aI , I Steady regime at aI < a < aII , II VS (vortex shedding)
regime at aII 6 a 6 aIII and II Steady regime for a > aIII . Thus
for a Re in the vortex shedding regime of the stationary cylinder,
the suppression of vortex shedding occurs at certain rotation
rate for a rotating cylinder and flow remains steady at higher
rotation rates except for a narrow range of a at which vortex
shedding reappears. No such transitions with increasing rotation
rate is found and flow remains steady for Re = 20 and 40.
Furthermore, with increasing Re, it can be seen that aI increases
monotonically but aII and aIII decreases. The difference between
aII and aIII decreases monotonically with Re decreasing from 100
to 60 with aII ¼ 5:45 and aIII ¼ 5:5 at Re ¼ 60. This may be the
reason that incipience of vortex shedding is not found at
Re ¼ 40 for a as high as 20 in the present work. The figure also
shows a good agreement between the present results and that of
Stojkovic et al. [11].

6.2. Heat and fluid flow model

To make the discussion in the following subsections more clear,
steady heat/fluid flow patterns represented by heat/stream lines
for the stationary and rotating cylinder are compared in this sub-
section at Re = 40. The comparison for fluid flow is done with the
help of points such as center and saddles proposed by Perry et al.
[24] and Eaton [25]. Saddle point are critical points where stream-
line crosses itself and are called viscous or inviscid depending on
whether they are on solid-surface or in the flow-field, respectively.
Fig. 3(a) shows ‘‘k” and ‘‘l” as the two viscous saddle points for the
stationary and two inviscid ones for the rotating cylinder at a ¼ 1,
shown in Fig. 3(b). Fig. 3(c) shows only one inviscid saddle point
‘‘k” at the highest rotation rate. A streamline that contains an invis-
cid saddle point referred as a ‘‘separatrix” is also shown in the fig-
ure by thick line.

Fig. 3(a) shows twin vortex, upper and lower represented by ‘‘A”
and ‘‘B”, attached to the rear end of the cylinder surface whereas
Fig. 3(b) shows the merging of lower counter-clockwise vortex
with the cylinder counter-clockwise rotation to form a vortex
around the cylinder called here as ‘‘enveloping vortex” while upper
clockwise vortex called here as ‘‘detached vortex” is seen detached
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from the cylinder surface with the loss of symmetry of the flow
about horizontal centerline. Fig. 3(b) shows a separatrix which sep-
arates the incoming free stream main flow into two parts: one
passing above the enveloping vortex and the other moving down-
ward and around the enveloping as well as the detached vortices.
At a P 3 for all Re’s considered here, the clockwise detached vor-
tex in Fig. 3(b) disappears by merging into the flow and the flow
contains only enveloping vortex with flow structure similar to po-
tential flow theory, shown in Fig. 3(c) at a ¼ 6. Thus, at low to
moderate a, the flow pattern near the cylinder is strongly affected
by viscous forces but not at high a values with flow dominated by
inertia effect. As in the case of stationary cylinder, here also there is
flow acceleration and deceleration near the different portion of the
cylinder surface resulting in favorable and adverse pressure gradi-
ent, from t-b and b-t in the direction of rotation, respectively, seen
by the increasing or decreasing gap between the cylinder and
enveloping vortex in Fig. 3(b) and (c). However, the flow inertia
near the cylinder surface is sufficiently large to overcome the ad-
verse pressure gradient with no flow separation on the cylinder
surface.

For the stationary cylinder, the dashed lines in Fig. 3(a) shows
that the heat lines/flow originates from the cylinder surface and
extend/move downstream with decreasing heat flux indicated by
increased gap between the two consecutive heatlines. Further-
more, as the heatlines are plotted here at a constant interval of
heat-function, the increased gap over the cylinder surface indicates
decreasing heat flux from the front to the rear end of the cylinder.
At the rear end of the cylinder, it can also be seen that heat flows
over twin recirculating heat/caloric-fluid flow regions, called here
as twin ‘‘heat-vortex”, detached from the cylinder. The heat flow
is similar for the rotating cylinder, shown in Fig. 3(b) and (c), ex-
cept that only one detached heat-vortex of smaller size than the
fluid-vortex is formed at a ¼ 1 which also disappears at a P 3,
shown in Fig. 3(c) for a ¼ 6.

For a surface with tangential and normal coordinates as St and
Sn, the Eqs. (12) and (13) for heatlines can be expressed as

@H
@St
¼ PeUnh�

@h
@Sn

ð12Þ

� @H
@Sn
¼ PeUth�

@h
@St

ð13Þ

At the cylinder surface, St and Sn are along the angular and ra-
dial directions, respectively. For the cylinder surface maintained
at CWT @h=@St ¼ 0 and Eq. (13) reduces to @H=@Sn ¼ �Pea as
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Ut ¼ a and h ¼ 1. For stationary cylinder, @H=@Sn ¼ 0 and thus, the
heatlines are perpendicular to the wall for the stationary cylinder
shown in Fig. 3(a). Due to rotation, the heatlines emerges more
close to the cylinder surface angular direction which increases
with increasing a as @H=@Sn !1 ; i.e. @H=@St ! 0. Thus, the heat-
lines are tightly wound spirals with heat flow dragged by the cyl-
inder rotation, released upward and finally swept away
downstream by the fluid flow.

One interesting contribution of heatline pattern is that it shows
graphically the magnitude of non-dimensional rate of heat transfer
and can be directly used to obtain Nusselt number. The difference
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of heat function value between two consecutive heatline emerging
from the surface gives the local heat transfer rate. The difference
between maximum and minimum heatline values is equal to total
heat transfer rate from the cylinder surface. Applying Eq. (12) at
the surface where normal velocity, Un ¼ 0, the difference of heat
function value between two consecutive heatline divided by the
distance between them on cylinder surface gives @H=@St . This value
is found to match with the local Nusselt number (not shown here).
When the heatlines are plotted with a constant difference of heat
function, the number of lines emerging from the cylinder surface
indicates the relative magnitude of heat transfer rate. For example,
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there are 10 such lines for a ¼ 1 and 7 lines for a ¼ 6 in Fig. 3 indi-
cating higher heat transfer rate for a ¼ 1. For a ¼ 0, Fig. 3 shows
denser heatlines near the front end of cylinder whereas for a > 0,
denser heatlines are observed below the cylinder similar to the
streamlines indicating higher heat flux.

6.3. Instantaneous fluid flow patterns in the VS regimes

The instantaneous streamlines in the Fig. 4 shows the detailed
views of the laminar vortex shedding near the circular cylinder
at Re ¼ 100 for a ¼ 0;a ¼ 1 (I VS regime) and a ¼ 5 (II VS regime)
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for eight successive moments of time which span over the whole
period. Thus, Fig. 4(a), (i) and (q) (corresponding to the time of
maximum lift) is repeated after Fig. 4(h), (p) and (x), respectively
for the next cycle of vortex shedding. In this figure, the critical
points of the streamline patterns such as centers and saddles are
shown with separatrix represented by thick line.

For stationary cylinder case, Fig. 4(a)–(h) shows only one grow-
ing and shedding vortex with the detachment of the growing vor-
tex only after the shedding vortex disappears, resulting in not more
than one shedding vortex at any time instant, (similar to that of Ea-
ton [25]). However, for rotating cylinder, Fig. 4(i)–(p) shows an
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enveloping vortex and two growing/shedding vortices (Fig. 4(n)
and (o)). In contrast to stationary cylinder, the seed for the shed-
ding vortices are not formed on the cylinder surface but are formed
in the flow field (compare Fig. 4(b) and (m)) and convected/shed
downstream. Clockwise vortex ‘‘A” can be seen in all the figures
of 4(i)-(p) except 4(l) and 4(m) in which it sheds out whereas
anti-clockwise vortex ‘‘B” is visible only in Fig. 4(m) as growing
vortex and Fig. 4(n) and (o) as shedding vortex. Therefore, as dis-
cussed earlier by Kang et al. [9], the clockwise vortex ‘‘A” is stron-
ger and stays longer than the weaker anti-clockwise vortex ‘‘B”.
Moreover, it can be seen from Fig. 4(i)–(p) that the size of envelop-
ing vortex remains constant.

Fig. 4(q)–(x) shows the instantaneous streamlines at a rotation
rate a ¼ 5 which is in the II VS regime with much larger size of an
egg shaped enveloping vortex and the disappearance of the clock-
wise detached vortex. The figure shows that the size/amount of
enveloping vortex/recirculating-fluid varies with time. The de-
crease/increase in enveloping vortex size is related with the loss/
gain of the fluid. The fluid moving around and below the vortex
supply as well as take the fluid from the vortex for the time dura-
tion corresponding to Fig. 4(r)–(v). However, the flow above the
vortex contributes only to the decrease in size of the vortex where
the vortex releases the fluid from its tip at a time instant between
Fig. 4(v) and (w). This tip of enveloping vortex performs an oscilla-
tory motion with time. The vortex-shedding pattern is completely
different at this rotation rate with one vortex shed in the trans-
verse direction instead of two vortex shed in streamwise direction
at a ¼ 0 and 1.

6.4. Steady/time-averaged heat and fluid flow patterns

Fig. 5(a)–(l) shows the streamlines and 5(m)-(x) shows the
heatlines for various rotation rates and Reynolds number. Note
that the results for a ¼ 0 and 1 are time-averaged as the flow is
periodic. For the periodic flow, it can be seen that the size of
twin/detached fluid (Fig. 5(a)–(f)) as well as heat (Fig. 5(m)–(r))
vortex decreases with increasing Re for the stationary/rotating cyl-
inder. This indicates that the shedding vortex disappears at a short-
er downstream distance with increasing Re at a ¼ 0 and 1. For
steady flow at a ¼ 2, an opposite trend of variation of the size of
the detached fluid/heat vortex with increasing Re is seen in
Fig. 5(g)–(i)/(s)–(u), similar to that found in steady flow regime
of stationary cylinder for twin vortex. However, the size of envel-
oping fluid-vortex decreases with increasing Re for periodic as well
as steady flow across rotating cylinder, shown in Fig. 5(d)–(l). Thus,
the amount of fluid inside the vortex increases with increasing Re
and rotation rate.

6.5. Frequency and amplitude of unsteady periodic flow oscillation

The oscillation frequency is represented by Strouhal number
and the oscillation amplitude by rms values of drag and lift coeffi-
cients, discussed in the following subsections for varying Re and
varying rotation rate with the help of Fig. 6. Their values in y-axis
on the left and right corresponds to range of a in the I and II VS re-
gime, respectively, with zero values in the intermediate range of a
as the flow is steady. Strouhal number is obtained here from tem-
poral variation of lift coefficient.

In the I VS regime ð0 < a < 2Þ, as the rotation rate increases
from 0 to 1, Fig. 6(a) and (b) shows small change in St and CLrms

whereas Fig. 6(c) shows rise in the value of CDrms which increases
with increasing Re. With further increase in rotation rate
ð1 < a < 2Þ, Fig. 6(a) shows slight drop in the values of Strouhal
number and Fig. 6(b) and (c) show large drop in the CLrms and
CDrms indicating that the amplitude of vortex shedding approaches
zero to reach to steady flow. Similar to stationary cylinder, Fig. 6
shows that the frequency and amplitude of vortex shedding flow
increases monotonically with increasing Re for the cylinder rotat-
ing at a constant rotation rate. The maximum decrease in Strouhal
number as a increases from 0 to aI is 5.6% at Re ¼ 160 whereas St
increases by 38.5% at a ¼ 0 and 35:2% at a ¼ 1 as Re increases from
60 to 160. Thus, Strouhal number is strongly dependent on Re and
weakly dependent on rotation rate in the I VS regime. Furthermore,
in this regime, Fig. 6(a) shows an excellent agreement between the
present result and that of Kang et al. [9], shown by filled symbols.

In the II VS regime for a very small range of increasing a (close
to 5), Fig. 6(a) shows that the frequency of vortex shedding reduces
from one-tenth to one-hundredth of its value in the I VS flow re-
gime indicating that the unsteadiness is very slow. The large
change in the frequency of the oscillation is due to entirely differ-
ent periodic flow phenomenon in the I (Fig. 4(a–p)) and II (Fig. 4(q–
x)) VS regimes. Fig. 6(b) and (c) shows that the rms value of lift and
drag coefficient is greater in the II as compared to the I VS regime
for all Reynolds numbers, probably due to large change in the size
of enveloping vortex with time in the II VS regime (Fig. 4(v)–(x)).

6.6. Mean lift and drag coefficient

The pressure variation near the rotating cylinder (figure not
shown here) indicated that the pressure is dependent on the gap
between the cylinder and the enveloping vortex. Fig. 3(c) shows
that the gap is minimum and thus, the velocity/pressure is maxi-
mum/minimum just below the cylinder and an opposite variation
is found just above the cylinder. Thus, the pressure above the top
half of the cylinder is more as compared to that in the bottom half
resulting in the negative/downward pressure lift coefficient for the
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rotating cylinder, shown in Fig. 7(a). Furthermore, the figure shows
monotonic decrease in the pressure lift coefficient with increase in
rotation rate. This is due to the more increase in the size for the top
half as compared to the bottom half of the enveloping vortex
resulting in drastic reduction in the surface pressure values (figure
not shown) on the lower half of the cylinder surface as compared
to the reduction in the upper half at a constant Re whereas its in-
crease with increasing Re at a constant a is marginal.

Fig. 7(b) shows that there is a monotonic decay in the pressure
drag coefficient with increasing rotation rate with a change in the
direction of the drag force around a ¼ 2. For a < 2, Fig. 5(d)–(i)
shows that the tip of the enveloping vortex (denoted by ‘‘k” in
Fig. 3(c)) is in the front half of the cylinder. Thus, the area of fluid
in the vortex and the pressure in the front half of the cylinder is
more as compared to that in the rear half resulting in the posi-
tive/forward pressure drag coefficient for the cylinder rotating at
a < 2 and an opposite trend in the variation is found at higher rota-
tion rate due to the change in the shape and size of enveloping
vortex.

Fig. 7(a) shows that the negative/downward viscous lift coeffi-
cient and Fig. 7(b) shows the positive/forward viscous drag coeffi-
cient increases with increasing rotation rate due to increase in the
velocity gradient at the cylinder surface. Fig. 7(c) shows that the
downward lift force, CL ¼ CLp þ CLv , increases monotonically with
increasing a and with increasing Re. However, the increase is mar-
ginal with increasing Re. Thus, the lift coefficient is strongly depen-
dent on rotation rate and weakly dependent on Re. Pressure force
is found to contribute more to total lift force as compared to vis-
cous force.
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rate a for various Re.
Fig. 7(d) shows the variation of total drag coefficient
ðCD ¼ CDp þ CDv Þ with rotation rate a for all Re. For stationary cyl-
inder, pressure drag contribute more to total drag. However, for
rotating cylinder, the contribution of viscous drag increases shar-
ply with increasing a and becomes more than that of pressure drag
at the largest a, shown in Fig. 7(b). With increasing a, Fig. 7(d)
shows that CD decreases monotonically till certain rotation rate
(around 4) and thereafter, it increases when an increasing trend
of viscous drag dominates over the decreasing trend of pressure
drag (Fig. 7(b)).
6.7. Local Nusselt number

Fig. 8 shows the variation of local Nusselt number on the sur-
face of the cylinder with increase in the Re for various rotation
rates a with the help of polar plot. Note that the scale in the radial
direction is different in the sub-figures and innermost profile is at
Re ¼ 20 and outermost is at Re ¼ 160.

For stationary cylinder, Fig. 8(a) shows that NuL increases with
increasing Re where NuL is time averaged for Re ¼ 60 to 160.
Fig. 8(a) shows symmetric variation of NuL about / ¼ 180� for all
Re and kink in the NuL is seen at 180�. NuL is the maximum at
/ ¼ 0� (front stagnation point) for all Re whereas it is minimum
at 180� for Re = 20 and at two points /I � 130� and at /II � 230�

for other Reynolds numbers. Furthermore, NuL decreases upto
/ � /I , then /I < / 6 180� it increase, it again decreases
180� < / 6 /II and finally it increases for / > /II , for Re ¼ 40 to
160. For Re ¼ 20;/I ¼ /II ¼ 180�.
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For rotating cylinder, Fig. 8(b) shows the variation of NuL at
a ¼ 1 where maximum in NuL does not occur at front stagnation
point but shifts in the direction of rotation and is at / � 325�. Min-
imum in NuL occurs at /I � 85� and /II � 185�. Kink in NuL also
shifts towards the direction of rotation. Further increase in rotation
rate ða ¼ 2Þ shifts the maximum and minimum NuL further in the
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direction of rotation as seen in Fig. 8(c). For a ¼ 3 to 6 kink in NuL

disappears and smooth variation in NuL is seen. The kink in NuL

variation for a 6 2 may be related to the shape of the enveloping
vortex which results in positive pressure drag (Fig. 7(b)). Fig. 8
shows that the variation in NuL for the range of Reynolds number
decreases with increasing rotation rates. Furthermore, NuL be-
comes almost independent of Re at higher rotation rates as seen
from Fig. 8(g). Moreover, figure also shows that the range of varia-
tion of NuL over the surface of the cylinder at a constant Re reduces
with increase in a.

6.8. Average Nusselt number

For rotating cylinder maintained at Re ¼ 100 and a ¼ 1, average
Nusselt number of 4.991, obtained in the present study, matches
well with 5:139 reported by Badr and Dennis [13]. Fig. 9(a) shows
the variation of average Nusselt number and Fig. 9(b) shows the
percentage suppression in heat transfer with increasing rotation
rate for various Re. Fig. 9(a) show the monotonic decrease in the
average Nusselt number with increasing rotation rates for various
Re. The decrease in the Nusselt number with increasing rotation
rate can be explained on the basis that the fluid entrapped inside
the enveloping vortex acts as a buffer zone for heat transfer be-
tween the cylinder and free stream and restrict the heat transfer
to conduction only. Furthermore, the size of enveloping vortex
and thus, the mean thickness of the buffer zone increases with in-
crease in a (figure not shown) resulting in the increase in the ther-
mal resistance and decrease in conduction heat transfer. A drastic
reduction in Nusselt number is seen in Fig. 9(a) for a > 4, due to
substantial increase in the size of enveloping vortex. The figure
also shows that the Nusselt number increases monotonically with
increasing Re at a constant a due to increased inertia of the flow.
However, at the highest rotation rate of a ¼ 6, Nu reaches almost
constant value around 2.5 for all Re i.e. becomes independent of
Re. This is due to negligible change in the size of enveloping vortex
with increasing Re and thus, the thermal resistance and Nu re-
mains almost constant.

Fig. 9(b) shows the normalized Nusselt number obtained by the
ratio of average Nusselt number of rotating cylinder to that of sta-
tionary cylinder for various rotation rates a to understand the sup-
pression of heat transfer. It can be seen from the Fig. 9(b) that
suppression increases with increasing Re and increasing a, having
minimum of 8.44% in case of Re ¼ 20 and maximum of 61.94% in
case of Re ¼ 160 at a ¼ 6. For the range of Re considered, the sup-
pression of heat transfer is less than 20% for a 6 4 with a sharp in-
crease for the higher rotation rates reaching a maximum of 61.94%
in case of a ¼ 6 at Re ¼ 160. Thus, cylinder rotation can be used not
only for controlling flow but also as an efficient heat transfer sup-
pression technique.
7. Conclusion

Present study focuses on the unconfined flow and heat transfer
characteristics around a rotating circular cylinder in the 2-D lami-
nar flow regime for various rotation rates and the cylinder sub-
jected to constant wall temperature. Flow transition map found
by the earlier researchers is shown here for a wider range of Rey-
nolds number and rotation rates. With increasing in rotation rate
for Re P 60, suppression of vortex shedding takes place at certain
a, thereafter, the vortex shedding reappears for a narrow range of
a.

The heat flow is discussed with the help of heatlines using one
of the earliest definition of heat as a caloric fluid with an analogy
with streamline for fluid flow. For the stationary cylinder, the stea-
dy-state and time-averaged heat flow pattern represented by heat-
lines shows twin heat-vortex similar to fluid-vortex represented by
streamlines in fluid flow. Heatlines emerges from the cylinder and
passes over the heat-vortex of smaller size formed detached from
the cylinder rear surface whereas the streamlines emerging from
the free-stream inlet passes over the fluid-vortex attached on the
surface. For the rotating cylinder, the steady-state and time-aver-
aged streamlines shows an enveloping vortex and a detached vor-
tex whereas the heatlines shows only a detached vortex of smaller
size. Instead of enveloping fluid-vortex, the heatline emerges from
the cylinder surface as tightly wound spirals with heat flow
dragged by the cylinder rotation and released upward and finally
swept away downstream by the fluid flow. At low rotation rates,
the instantaneous streamline pattern during vortex shedding
shows that the clockwise vortex stays much longer as compared
to anti-clockwise vortex which leads to the formation of detached
clockwise vortex in the time-averaged streamlines. However, the
clockwise vortex is not seen at the higher rotation rates. Probably
for the first time, the transient heat function is computed here in
the finite-volume method framework as well as for the complex
geometry/domain and is used to compute Nusselt number for
CWT boundary condition.

The frequency of unsteady periodic flow decreases but its
amplitude increases in the II VS regime as compared to the I VS re-
gime. A downward lift force is found due to rotation which in-
creases monotonically with increasing a and remain almost
constant with increasing Re. Rotation can be used as a drag reduc-
tion technique as the drag coefficient decreases monotonically
with increasing a upto 4 with a value close to zero at a ¼ 4 for
all Re. Average Nusselt number is found to decrease with increas-
ing rotation rate and increase with increasing Re, reaching almost a
constant value at the highest rotation rate for all Re. Heat transfer
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suppression due to rotation increases with increasing Re and
increasing rotation rate.
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